selamat datang di blog ini, tinggalkan pesan ya...! dan JANGAN KLIK iklannya... he..he...he......

Iklan

Jumat, 29 Mei 2009

bilangan reynold

I. PENDAHULUAN


A. Latar Belakang

Perbandingan gaya-gaya yang disebabkan oleh gaya inersia, gravitasi, dan kekentalan (viskositas) dikenal sebagai bilangan reynold (Re) ditulis sebagai berikut :
Re = V x l / v
Dimana : V = kecepatan rata-rata aliran
L = panjang karakteristik (m)
h untuk aliran terbuka
d untuk aliran tertutup
v = viskositas kinematik (m2/detik)
Aliran fluida dalam pipa, berrdasarkan besarnya bilangan reynold dibedakan menjadi aliran laminar, aliran transisi, dan aliran turbulen. Dalam hal ini jika nilai Re kecil aliran akan meluncur diatas lapisan lain yang dikenal dengan aliran laminar sedangkan jika aliran-aliran tadi terdapat garis edar tertentu yang dapat dilihat, aliran ini disebut aliran turbulen.
Pada pipa:
· Aliran laminar terjadi jika Re <> 4000
Untuk kondisi 2100 < re =" V">1000
Untuk kondisi 500 < Re < 1000 aliran ini diklasifikasikan sebagai aliran transisi. Dimana Re = V R / v Guna menentukan makna kelompok tanpa dimensi. Reynold melakukan eksperimennya mengenai aliran air melalui lubang kaca. Sebuah tabung kaca dipasang horizontal dengan satu ujungnya didalam tangki dan sebuah katup pada ujung lainnya. Pada ujung hulu terpasang lubang masuk corong lonceng yang licin, dengan jet warna yang diatur demikian sehingga arus zat waktu yang halus dapat disemprotkan di titik setiap didepan corong lonceng tersebut. Sebagai kecepatan karakteristik Reynold memakai kecepatan rata-rata V dan sebagai panjang karakteristik dipakainya garis tengah tabung (D) sehingga Re = V D r /m Untuk debit yang kecil arus zat warna bergerak melalui tabung membentuk lamina-lamina (benang-benang) yang menujukkan bahwa aliran tersebut merupakan aliran laminar. Dengan meningkatnya laju aliran tersebut maka bilangan reynold akan bertambah besar, karena parameter V berbanding lurus dengan laju aliran, sedangkan parameter D ,r ,m adalah konstan. Zat warna paada kondisi tersebut akan bercampur dengan air. Aliran telah berubah menjadi aliran turbulen dengan pertukaran momentumnya yang besar yang telah sepenuhnya menggangu gerakan teratur aliran laminar.

B. Tujuan
Tujuan dari praktikum adalah menghitung besarnya bilangan reynold pada suatu aliran air.


II. TINJAUAN PUSTAKA

Mekanika fluida adalah ilmu mekanika dari zat cair dan gas yang didasarkan pada prinsip yang sama dengan prinsip yang dipakai pada zat padat aliran zat cair di dalam pipa dapat diklasifikasikan menjadi dua jenis yaitu aliran laminar dan aliran turbulen Aliran laminar adalah aliran yang bergerak dalam lapisan-lapisan atau lamina-lamina, tukar menukar momentum secara molekuler saja. Aliran turbulen mempunyai gerakan partikel-partikel fluida yang sangat tidak menentu, dengan saling tukar menukar momentum dalam arah melintang. Untuk menyatakan gerak fluida adalah dengan mengikuti gerak partikel didalam fluida. Kecepatan dari tiap partikel fluida pada satu titik tertentu adalah tetap, disebutkan bahwa aliran bersifat tunak, pada suatu titik tertentu tiap partikel fluida akan mempunyai kecepatan sama baik, besar, maupun arahnya. Pada titik yang lain suatu partikel mungkin mempunyai kecepatan yang berbeda aliran tunak seperti ini terjadi pada aliran yang pelan, kecepatan yang berubah dari titik ke titik disebut aliran turbulen. Aliran laminar tidak dapat di anggap tanpa pusaran sama sekali, tetapi aliran laminar mempunyai gerak translasi dan rotasi pada bagian pusatnya dan kecepatan sudutnya merupakan harga yang rill. Gerak fluida didalam suatu pipa aliran haruslah sejajar dengan dinding tabung, meskipun besar kecepatan fluida dapat berbeda dari satu titik ke titik lain didalam pipa. Jika jarak antar garis- garis arus adalah kecil, maka kecepatan fluida haruslah besar. Tempat dengan garis-garis yang renggang tekanannya akan lebih besar dari pada tempat dengan garis arus yang rapat. Sifat pokok aliran serta posisi relarifnya ditunjukkan oleh bilangan reynold. Persamaan yang lebih umum, yang memperhitungkan viskositas telah dikembangkan dengan menyertakan tegangan geser. Berdasarkan data eksperimen kita mendapatkan bahwa ada 4 faktor yang menentukan apakah suatu aliran bersifat laminar atau turbulen. Kombinasi dari empat factor ini disebut bilangan Reynold, NR dan didefinisikan dari: NR = dengan ρ adalah rapat massa fluida, v kecepatan rata – ratanya, η viskositas, dan D adalah garis tengah pipa. Bilangan reynold adalah bilangan tanpa dimensi, sehingga harganya tidak tergantung pada system satuan yang dipakai. Hasil-hasil eksperimen menunjukkan bahwa jika suatu aliran harga bilangan reynold adalah antara 0 dan 2000, maka aliran tersebut bersifat laminar, sedangkan diatas 3000 aliran bersifat turbulen. Untuk bilangan reynold antara 2000 dan 3000 terdapat daerah transisi, aliran dapat berubah keadaan dari laminar menjadi turbulen, atau sebaliknya.


III. METODOLOGI

A. Alat

Alat yang digunakan pada praktikum kali ini adalah: 1. Selang 2. Penggaris 3. Stop watch (Handphone) 4. Alat penguji 5. Tempat penampung air 6. Jangka sorong

B. Bahan

Bahan yang digunakan pada praktikum ini adalah: 1. Air 2. Tinta

C. Prosedur kerja

Langkah-langkah yang dilakukan dalam praktikum ini adalah: 1. Alat penguji aliran fluida dipasang dengan benar. 2. Tabung penguji diisi dengan air sampai penuh, tinta dipasang didalam tabung. 3. Kran air dibuka dan diatur, air dialirkan pada tabung penguji. Katup dibawah tempat tinta dibuka untuk dialiri tinta. Katup diatur, agar aliran tinta pada saat kran air dibuka penuh tidak dapat dibedakan (membentuk benang atau tidak). 4. Aliran tinta dalam pipa diamati, Apakah membentuk benang atau tidak. 5. Aliran air yang keluar ditampung untuk mengetahui debit dan lama proses penampung tersebut. 6. Percobaan diulangi sebanyak 2 kali.


IV. HASIL DAN PEMBAHASAN

A. Hasil

Ø Percobaan 1 t = 10 detik volume = 240 ml = 0,24 L
Ø Percobaan 2 t = 15 detik volume = 400 ml = 0,4 L Perhitungan
Ø d = 12 cm = 0,12 m A = ¼ π d2 = ¼ π (0,12)2 A = 0,011 m2
Ø m/s m/s m/s
Ø Debit Q1 = A x V1 = 0,011 x 2,18 = 0,024 m3/s Q2 = A x V2 = 0,011 x 2,42 = 0,027 m3/s Qrata-rata = m3/s
Ø Bilangan Reynold RE = 30,67 Jadi, alirannya laminer

B. Pembahasan

Seorang peneliti yang bernama Osborne Reynold telah mencoba untuk menentukan dua kondisi air dengan debit aliran yang berbeda. Dua ikhwal aliran dikatakan serupa secara dinamik bila 1. kedua aliran tersebut serupa geometrik, yakni ukuran-ukuran linier yang bersesuaian mempunyai perbandingan yang konstan. 2. Garis-garis aliran yang bersesuaian adalah serupa secara geometrik, atau tekanan-tekanan dititik -titik yang bersesuaian mempunyai perbandingan yng konstan. Dari kedua pernyataan tersebut reynold menyimpulkan bahwa aliran-aliran tersebut akan serupa secara dinamik jika persamaan-persamaan diferensial umum yang mengganbarkan aliran-aliran tersebut identik. Aliran laminar didefinisikan sebagi aliran dengan fluida yang bergerak dalam lapisan-lapisan, atau lamina-lamina, dengan satu lapisan meluncur secara lancar pada lapisan yang bersebelahan dimana saling tukar momentum secara molekuler. Aliran untuk menuju arah kestabilan dan turbulensi diredam oleh gaya-gaya viskos yang memberikan tahanan terhadap gerakan relatif lapisan-lapisan fluida yang bersebelahan. Pada aliran turbulen terdapat gerak partikel fluida yang sangat tidak menentu, dimana momentum dalam arah melintang yang sangat kelihatan. Hasil dari percobaan dan perhitungan akan diperoleh jenis aliran yaitu aliran laminar karena mempunyai bilangan Re < 2100. Aliran yang dilakukan pada praktikum yang telah kami lakukan termasuk aliran laminar, hal tersebut dapat dilihat dari hasil Re pada perhitungan dimana dari percobaan mendapat nilai kurang dari 2100. Ini dapat menunjukkan bahwa perbandingan antara teori dengan pengujian tejadi kesignifikan walaupun nilai reynold yang dihasilkan kecil dan dikarenakan aliran yang ditampung dalam tampungan sedikit dan juga dapat dikarenakan oleh besarnya aliran yang mengalir pada selang. Pada pengujian didapatkan nilai bilangan reynold yaitu sebesar 30,67 sehingga aliran yang dihasilkan adalah aliran laminar. Parameter bilangan Reynold dapat dikatakan sebagai perbandingan gaya lembam terhadap gaya viskos. Untuk nilai Re yang besar menunjukkan bahwa aliran tersebut sangat turbulen dimana kerugian sebanding dengan kuadrat kecepatan. Untuk Re yang menengah maka akibat- akibat inersia maupun viskositas keduanya berperan, diman perubahan viskos akan dapat mengubah distribusi kecepatan serta tahanan terhadap aliran. Untuk aliran dengan nilai Re yang sama, maka dua sistem konduit tertutup yang serupa secara dinamik akan mempunyai perbandingan kerugian terhadap tingginya kecepatan yang sama. Reynold membedakan aliran laminar dan aliran turbulen menurut kecepatan alirannya yang disebut dengan kecepatan kritis dari reynold. Reynold melakukan percobaan- percobaan dimana kecepatan kritis reynold sebanding dengan viskositas kinematisnya (υ) dan berbanding terbalik dengan diameter pipanya. Vcr = K . Dimana K adalah konstanta kesebandingan tanpa satuan yang harganya sama untuk semua zat cair dan gas pada setiap penampang pipa. Praktikum yang telah kami lakukan mempunyai debit yang kecil dan arus zat warna bergerak melalui tabung itu menuruti garis lurus, dimana hal tersebut nenunjukan bahwa alirannya laminar. Dengan dinaikannya laju aliran, maka naiklah bilangan reynold, karena konstan dan V berbanding lurus dengan laju aliran. Dengan meningkatnya debit, kita mencapai suatu kondisi saat arus zat warna bergoyang dan kemudian tiba-tiba terurai serta terbaur ke seluruh tabung. Aliran telah berubah menjadi aliran turbulen dengan pertukaran momentumnya yang dahsyat yang telah sepenuhnya mengganggu gerakan teratur aliran laminar. (Victor L Streeter, 1985)


V. KESIMPULAN

Berdasarkan praktikum yang kami lakukan maka dapat disimpulkan 1. Bilangan reynold adalah bilangan tanpa dimensi, sehingga harganya tidak tergantung pada system satuan yang dipakai. 2. Besarnya bilangan Reynold dapat dibedakan sebagai berikut Nilai Re <> 4000 termasuk kedalam aliran turbulen.
3. Aliran laminar adalah aliran yang bergerak dalam lapisan-lapisan atau lamina-lamina, tukar menukar momentum secara molekuler saja.
4. Aliran turbulen adalah aliran yang bergerak tidak beraturan sehingga tidak terlihat lamina-laminanya.
5. Pengujian didapatkan nilai bilangan reynold yaitu sebesar 30,67 sehingga aliran yang dihasilkan adalah aliran laminar.


DAFTAR PUSTAKA


Halliday,D & Resnick,R. 1990. Fisika jilid 1. Erlangga. Jakarta.
Suharto. 1991. Dinamika dan Mekanika untuk Perguruan Tinggi. Rineka Cipta. Jakarta.

Streeter, VL & Wylie, EB. 1985. Mekanika Fluida jilid 1. Erlangga. Jakarta.

Tidak ada komentar:

Posting Komentar

silahkan tinggalkan pesan....